Long noncoding miRNA gene represses wheat β-diketone waxes.
نویسندگان
چکیده
The cuticle of terrestrial plants functions as a protective barrier against many biotic and abiotic stresses. In wheat and other Triticeae, β-diketone waxes are major components of the epicuticular layer leading to the bluish-white glaucous trait in reproductive-age plants. Glaucousness in durum wheat is controlled by a metabolic gene cluster at the WAX1 (W1) locus and a dominant suppressor INHIBITOR of WAX1 (Iw1) on chromosome 2B. The wheat D subgenome from progenitor Aegilops tauschii contains W2 and Iw2 paralogs on chromosome 2D. Here we identify the Iw1 gene from durum wheat and demonstrate the unique regulatory mechanism by which Iw1 acts to suppress a carboxylesterase-like protein gene, W1-COE, within the W1 multigene locus. Iw1 is a long noncoding RNA (lncRNA) containing an inverted repeat (IR) with >80% identity to W1-COE The Iw1 transcript forms a miRNA precursor-like long hairpin producing a 21-nt predominant miRNA, miRW1, and smaller numbers of related sRNAs associated with the nonglaucous phenotype. When Iw1 was introduced into glaucous bread wheat, miRW1 accumulated, W1-COE and its paralog W2-COE were down-regulated, and the phenotype was nonglaucous and β-diketone-depleted. The IR region of Iw1 has >94% identity to an IR region on chromosome 2 in Ae. tauschii that also produces miRW1 and lies within the marker-based location of Iw2 We propose the Iw loci arose from an inverted duplication of W1-COE and/or W2-COE in ancestral wheat to form evolutionarily young miRNA genes that act to repress the glaucous trait.
منابع مشابه
A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci Determines β-Diketone Biosynthesis and Glaucousness.
The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under drought conditions. Despite extensive genetic and biochemical characterization, the molecular gene...
متن کاملThe Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS
The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue–grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase—the β-diketone synthase (DKS), a lipase...
متن کاملThe Polyketide Components of Waxes and the Cer-cqu Gene Cluster Encoding a Novel Polyketide Synthase, the β-Diketone Synthase, DKS
The primary function of the outermost, lipophilic layer of plant aerial surfaces, called the cuticle, is preventing non-stomatal water loss. Its exterior surface is often decorated with wax crystals, imparting a blue-grey color. Identification of the barley Cer-c, -q and -u genes forming the 101 kb Cer-cqu gene cluster encoding a novel polyketide synthase-the β-diketone synthase (DKS), a lipase...
متن کاملDevelopmental Changes in Composition and Morphology of Cuticular Waxes on Leaves and Spikes of Glossy and Glaucous Wheat (Triticum aestivum L.)
The glossy varieties (A14 and Jing 2001) and glaucous varieties (Fanmai 5 and Shanken 99) of wheat (Triticum aestivum L.) were selected for evaluation of developmental changes in the composition and morphology of cuticular waxes on leaves and spikes. The results provide us with two different wax development patterns between leaf and spike. The general accumulation trend of the total wax load on...
متن کاملGenetic Interactions Underlying the Biosynthesis and Inhibition of β-Diketones in Wheat and Their Impact on Glaucousness and Cuticle Permeability
Cuticular wax composition greatly impacts plant responses to dehydration. Two parallel pathways exist in Triticeae for manipulating wax composition: the acyl elongation, reduction, and decarbonylation pathway that is active at the vegetative stage and yields primary alcohols and alkanes, and the β-diketone pathway that predominates at the reproductive stage and synthesizes β-diketones. Variatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 15 شماره
صفحات -
تاریخ انتشار 2017